

PI: Victor Li (University of Michigan)

Team Members:

Kimberly Kurtis Georgia Institute of Technology Paulo Monteiro University of California Berkeley

Project Goal

Enhancing concrete infrastructure service life by 5-fold

TINA-Cement
Annual Meeting
October 13 & 14, 2021

Total project cost:	\$1.9M
Current Q / Total Project Qs	Q9 / Q12

The Concept – Enhancing durability by chemistry and crack control

Result: No repeated repairs, lowers energy consumption and O&M cost of infrastructure

The Team

Sub-groups	Main focus
Michigan Group	Project coordination, composite development and extreme durability investigation and verification
Georgia Tech Group	Cement chemistry, particle packing, and durability
Berkeley Group	Micro- and nano- characterization

Project Objectives – A suite of EDC products within 2 years

Goal: To achieve an EDC with life expectancy *five times* that of current concrete

Duration: 2 years (10/2019 – 09/2021)

Final Deliverables:

- Compressive strength: three levels > 20 MPa, 30 MPa and 40 MPa
- Tensile ductility > 3%
- Crack width < 50 μm

Multiple fine cracks achieved by micromechanical design

EDC attains tensile ductility up to 8%

Stress-Strain Relationship under Direct Tension

Ingredients

Portland Cement

Fly Ash

Metakaolin

Limestone

Silica Sand

Water

HRWRA

Polypropylene Fiber

Air Cured for 28 Days; Loaded at 0.5 mm/min

Crack width controlled below 50 µm using waste tire rubber

EDC crack pattern at 2% tensile strain

Tight cracks slow down steel rebar corrosion substantially

Technology-to-Market

- Commercialization Plan
 - <u>Technology</u>: Extremely durable concrete (EDC) for general civil infrastructure and critical energy infrastructure applications
 - Route: Licensing
 - <u>Timeline</u>: 1) Industry focus group [2020], 2) Prototyping and demonstration [in progress], and
 3) Market penetration [2022]
 - Required Resources: Engagement of early adopters with expertise in design and construction; Policy support by public agency such as DOTs and cities/counties to lower the risk for early adopters
 - Potential Applications and Adopters: Highway and roadway, bridge, pipeline, general repair application, critical energy infrastructure (such as nuclear plant), etc.

Summary Slide

- Concept: By coupling fiber bridging and durable binder chemistry, EDC develops ultrahigh ductility (up to 8%) and intrinsically tight crack width (<50 μm)</p>
- Final goal: A complete set of extremely durable concrete for industrial adoption
- Where we are: Material testing for extreme durability and self-healing capability

We welcome collaborations with partners involved in construction value chain

Low embodied and operational carbon infrastructure

https://arpa-e.energy.gov

